On the first Dirichlet Laplacian eigenvalue of regular polygons

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the first twisted Dirichlet eigenvalue

In this paper we prove an isoperimetric inequality for the twisted Dirichlet eigenvalue which was introduced by Barbosa and Bérard in the context of constant mean curvature surfaces. More precisely, we show that in the Euclidean case this eigenvalue is minimized by the union of two equal balls.

متن کامل

The ∞−Laplacian first eigenvalue problem

We review some results about the first eigenvalue of the infinity Laplacian operator and its first eigenfunctions in a general norm context. Those results are obtained in collaboration with several authors: V. Ferone, P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In section 5 we make some remarks on the simplicity of the first eigenvalue of ∆∞: this will be the object of a join...

متن کامل

A new proof of the bound for the first Dirichlet eigenvalue of the Laplacian operator

In this paper, we present a new proof of the upper and lower bound estimates for the first Dirichlet eigenvalue λ1 (B (p, r)) of Laplacian operator for the manifold with Ricci curvature Rc ≥ −K, by using Li-Yau’s gradient estimate for the heat equation.

متن کامل

Minimization of the k-th eigenvalue of the Dirichlet Laplacian

For every k ∈ N we prove the existence of a quasi-open set minimizing the k-th eigenvalue of the Dirichlet Laplacian among all sets of prescribed Lebesgue measure. Moreover, we prove that every minimizer is bounded and has finite perimeter. The key point is the observation that such quasi-open sets are shape subsolutions for an energy minimizing free boundary problem.

متن کامل

Blaschke-santaló and Mahler Inequalities for the First Eigenvalue of the Dirichlet Laplacian

For K belonging to the class of convex bodies in R, we consider the λ1product functional, defined by λ1(K)λ1(K ), where K is the polar body of K, and λ1(·) is the first Dirichlet eigenvalue of the Dirichlet Laplacian. As a counterpart of the classical Blaschke-Santaló inequality for the volume product, we prove that the λ1product is minimized by balls. Much more challenging is the problem of ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 2014

ISSN: 0386-5991

DOI: 10.2996/kmj/1414674611